Nathan Derr

Assistant Professor of Biological Sciences

Nathan Dear

Contact & Office Hours

Sabin-Reed Hall 435



Ph.D., Harvard University


The Derr lab pursues the biophysical and cell biological mechanisms of the cytoskeletal molecular motors dynein and kinesin.

The group studies these molecular machines in two ways: 1) at the level of individual motors to better understand how they convert ATP into the productive work required by the cell, and 2) in small ensembles that allow us to observe how these motors interact with one another at the nanoscale. In these studies, the lab often employs techniques from the field of DNA structural nanotechnology.

The Derr lab also pursues synthetic biology and the application of molecular motors to engineered nanoscale transport devices.

Selected publications

Derr ND*, Goodman BS*, Jungman R, Leschziner AE, Shih WM, Reck-Peterson SL. (2012). Tug of War in Motor Protein Ensembles Revealed with a Programmable DNA Origami Scaffold, Science 338: 662. Commentary on this research appeared in Science 338:626 (2012); 22:1053 (2012).

Goodman BS, Derr ND, Reck-Peterson SL. (2012). Engineered, harnessed and hijacked: synthetic uses for cytoskeletal systems, Trends in Cell Biology, 22: 664.

Qiu W*, Derr ND*, Goodman BS, Villa E, Wu D, Shih W, Reck-Peterson SL. (2012). Dynein achieves processive motion using both stochastic and coordinated stepping, Nature Structural and Molecular Biology 19: 193. Commentary on this research appeared in: Nature 482: 7383 (2012).

Reck-Peterson SL, Derr ND, Stuurman N. (2010). Single molecule imaging using total internal reflection microscopy. In Live Cell Imaging: a laboratory manual, 2nd edition. Cold Spring Harbor Press.

*denotes equal contributions